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Abstract. In a ;-contact representation of a planar graph G, each ver-
tex is represented as an axis-aligned plus shape consisting of two in-
tersecting line segments (or equivalently, four axis-aligned line segments
that share a common endpoint), and two plus shapes touch if and only if
their corresponding vertices are adjacent in G. Let the four line segments
of a plus shape be its arms. In a c-balanced representation, c ≤ 1, every
arm can touch at most dc∆e other arms, where ∆ is the maximum degree
of G. The widely studied T - and L-contact representations are c-balanced
representations, where c could be as large as 1. In contrast, the goal in
a c-balanced representation is to minimize c. Let ck, where k ∈ {2, 3},
be the smallest c such that every planar k-tree has a c-balanced rep-
resentation. In this paper we show that 1/4 ≤ c2 ≤ 1/3(= b2) and
1/3 < c3 ≤ 1/2(= b3). Our result has several consequences. Firstly,
planar k-trees admit 1-bend box-orthogonal drawings with boxes of size
dbk∆e × dbk∆e, which generalizes a result of Tayu, Nomura, and Ueno.
Secondly, they admit 1-bend polyline drawings with 2dbk∆e slopes, which
is significantly smaller than the 2∆ upper bound established by Keszegh,
Pach, and Pálvölgyi for arbitrary planar graphs.

1 Introduction

In a contact representation of a planar graph G, the vertices of G are represented
using different non-overlapping geometric shapes (e.g., lines, triangles, or circles)
and the adjacencies are represented by the contacts of the corresponding objects.
Contact representations arise in many applied fields, such as cartography, VLSI
floor-planning, and data visualization, which has motivated extensive research
over the past several decades. In this paper we examine ;-contact representations
of planar graphs, i.e., each vertex in such a representation Γ corresponds to an
axis-aligned plus shape, two plus shapes never cross, but touch if and only if
their corresponding vertices are adjacent in the input planar graph. Let the
four orthogonal parts associated with a plus symbol be its left, right, up and
down arms. We call Γ a c-balanced representation, where c ≤ 1, if every arm
in Γ touches at most dc∆e other arms, where ∆ is the maximum degree of the
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Fig. 1. (a) A graph G with ∆ = 5. (b) A (1/2)-balanced ;-contact representation of G.
(c) A box-orthogonal drawing of G. (d)–(e) A transformation into a polyline drawing.

underlying graph. The horizontal (or vertical) segments of two touching plus
shapes in Γ may be collinear, e.g., the shapes representing the vertices e and g
in Figures 1(a)–(b).

In 1994, de Fraysseix et al. [1] gave an algorithm to construct contact repre-
sentations of planar graphs with axis-aligned T shapes. Many studies followed
to characterize classes of planar graphs that admit contact representations with
shapes simpler than T , such as axis-aligned segments [2]and L shapes [3]. L-
and T -contact representations can be viewed as c-balanced ;-contact represen-
tations, however, c may be required to be as large as 1. On the other hand, in a
c-balanced representation, our goal is to minimize c.

Box-orthogonal drawings with small boxes of constant aspect ratio.
Balanced ;-contact representations are useful in the study of box-orthogonal
drawings in R2. A k-bend box-orthogonal drawing of a planar graph G is a planar
drawing of G, where each vertex is represented as an axis-aligned box and each
edge is drawn as an orthogonal polygonal chain with at most k bends. Every
;-contact representation can be transformed into a box-orthogonal drawing [4],
as shown in Figure 1(c). Some important aesthetics of a box-orthogonal drawing
are the number of bends per edge, and the aspect ratio and size of the boxes.
Biedl and Kaufmann [4] showed that every planar graph admits a 1-bend box-
orthogonal drawing on an integer grid, but the width or height of a box in such
a drawing could be as large as ∆. A c-balanced ;-contact representation implies
a 1-bend box-orthogonal drawing with boxes of size dc∆e × dc∆e.

Orthogonal drawings are box-orthogonal drawings with boxes of degenerate
shapes, i.e., points. The graphs that admit orthogonal drawings are of maximum
degree four. Hence a 0- and 1-bend orthogonal drawing gives a (1/4)-balanced
;-contact representation. There have been several attempts in the literature to
characterize the graphs that admit 0- and 1-bend orthogonal drawings [5, 6].
Recently, Tayu, Nomura, and Ueno [7] showed that every 2-tree with maximum
degree four admits a 1-bend orthogonal drawing. In this paper we show that
2-trees and planar 3-trees admit (1/3)- and (1/2)-balanced ;-contact represen-
tations, respectively, and thus admit 1-bend box-orthogonal drawings with boxes
of size d∆/3e × d∆/3e and d∆/2e × d∆/2e, respectively.
Planar slope number with one bend per edge. A k-bend polyline drawing of
a planar graph G is a planar drawing Γ of G, where each vertex is represented as



a point and each edge is drawn as a polygonal chain with at most k bends. Γ is a
t-slope drawing of G if the number of distinct slopes used by the line segments in
Γ is at most t. The planar slope number of G is the smallest number t such that G
admits a t-slope 0-bend drawing. A rich body of literature examines planar slope
number of different subclasses of planar graphs [8–10]. Keszegh et al. [11] proved
a q∆ upper bound on the planar slope number, where q is a constant. They also
showed that every planar graph G admits a 1-bend polyline drawing with at
most 2∆ slopes, by a transformation from T -contact representations into 1-bend
polyline drawings, as follows. Replace each vertical (respectively, horizontal)
arm with ∆ closely spaced nearly vertical (respectively, horizontal) slopes, e.g.,
see Figure 1(d). Finally, choose the bend points from the intersection points of
these slopes such that the resulting drawing remains planar, e.g., see Figure 1(e).
In this paper we show that 2-trees and planar 3-trees admit (1/3)- and (1/2)-
balanced ;-contact representations, respectively, and thus admit 1-bend polyline
drawings with at most 2d∆/3e slopes, and 2d∆/2e slopes, respectively.

2 Definitions and Preliminary Approach

In this section we introduce some definitions and construct (1/2)-balanced ;-
contact representations for 2-trees.

A 2-tree, or series-parallel graph (SP graph) G is a two-terminal directed
simple graph with n ≥ 2 vertices, which is defined recursively as follows.

(a) If n = 2, then G has a single edge (u, v), where either u or v is the source
and the other vertex is the sink.

(b) If n > 2, then G can be constructed from two SP graphs G1 and G2 from
one of the following two operations, e.g., see Figure 2(a).
- Series Composition: Identify the sink of G1 with the source of G2.
- Parallel Composition: Identify the source and sink of G1 with the source
and sink of G2, respectively. Finally, identify any parallel edges.

A c-balanced representation of a given SP graph G can be constructed as
follows. Construct a rectangle R and place the source and sink of G at the top-
left and bottom-right corners, respectively. Initially each edge of R can have
dc∆e contact points. If G is formed by a series composition of two SP graphs G1

and G2, then we split R into four rectangles, e.g., see Figure 2(b), and draw G1

and G2 into the top-left and bottom-right rectangles, respectively. If G is formed
by a parallel composition of G1 and G2, then we take two copies Ri, i ∈ {1, 2},
of R and draw Gi inside Ri (later on we merge these two drawings inside R). In
both series and parallel cases, we distribute the available contact points among
the subproblems, i.e., we compute the recursive drawings with bounded number
of contact points on the edges of their bounding rectangles. In our algorithms,
we specify the distribution of contact points so that we can merge the recursively
computed drawings maintaining planarity.

Let h be an arm of some vertex while constructing a ;-contact representation.
By the number of free points of h we refer to the number of other arms that can



touch h, which we denote by f(h). If f(h) = 0, then we say h is saturated,
otherwise h is unsaturated. The center of a vertex is the point, at which all four
of its arms meet. For a center m, we denote by ml,mr,mu,md the left, right, up
and down arms of m, respectively. Distributing an integer z among the arms of
m in some order σ = (md,mr,mu,ml) is an operation that finds the first arm
h such that z ≤

∑
h′≤σh

f(h′), then sets f(h) = z −
∑

h′<σh
f(h′), and finally,

for all arms h′′ subsequent to h, sets f(h′′) = 0. Such an operation is defined
only when z ≤

∑
h f(h). By di(v,G) and do(v,G) we denote the in-degree and

out-degree of vertex v in G. We omit the term G if it is clear from the context.
We now present a construction of (1/2)-balanced representations of SP graphs.

Lemma 1. Let G be a SP graph with source s and sink t, and let G′ be the
graph obtained from G by deleting the edge (s, t), if such an edge exists. Let
R = abcd be an axis-parallel rectangle such that s and t lie on the opposite corners
a and c, respectively. Assume that f(ad), f(ar), f(cl), f(cu) are prespecified. If
do(s,G

′) ≤ f(ad)+f(ar) and di(t, G
′) ≤ f(cl)+f(cu), then G′ admits a (1/2)-

balanced ;-contact representation Γ in R satisfying the following property.

(?) The number of contact points at each arm incident to s and t in Γ is at
most the number of free points specified for that arm as input.

Proof. We employ an induction on the number of vertices n of G. If n = 2,
then G′ consists of two vertices of degree zero, i.e., s and t, that lie on the two
opposite corners a and c of R, respectively. It is now straightforward to verify
Property (?). Hence assume that n > 2, and the lemma holds for every G that
has fewer than n vertices. We now consider the case when G has n vertices.

Since G is a SP graph and n > 2, G′ must be a SP graph, i.e., G′ is obtained
either by a series combination or a parallel composition of some SP graphs G1

and G2. Let si and ti be the source and sink of Gi, respectively, where i ∈ {1, 2}.
We now consider two cases depending on the composition of G1 and G2 in G′.

Case 1 (Series Composition): In this case s = s1, t1 = s2 and t2 = t. We
first define two rectangles R1 and R2 inside R, where G1 and G2 will be drawn,
respectively. To construct R1 and R2 we first add a vertex r inside R, which
corresponds to the center of vertex t1(= s2). We then draw four orthogonal line
segments re, rm, rg, rh such that e ∈ ab,m ∈ bc, g ∈ cd, h ∈ ad. Then R1 = aerh
and R2 = rmcg, as in Figure 2(b). We set f(rl) = f(rr) = f(ru) = f(rd) =
d∆/2e, and then assign the free points of s and t to s1 and t2, respectively.

If the edge (s1, t1) exists, then we draw (s1, t1) either along the polygonal
chain ahr or aer, depending on whether f(ad) = 0 or not. If the edge (s2, t2)
exists, then we draw (s2, t2) either along the polygonal chain rgc or rmc, de-
pending on whether f(cl) = 0 or not. Here we consider the case when both
(s1, t1) and (s2, t2) exist (the other cases can be treated similarly). Figure 2(c)
shows such an example, where f(ad) 6= 0 and f(cl) = 0. Observe that while
drawing (s1, t1) and (s2, t2), we use some free points of s1 and t2. Therefore,
we decrease the free points by one for each arm that helps routing (s1, t1) and
(s2, t2), e.g., see Figures 2(d)–(e). Since do(s,G

′) ≤ f(ad) + f(ar) in R, we
have do(s1, G1 \ (s1, t1)) ≤ f(a′d) + f(a′r), where a′ represents a in R1. Since
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Fig. 2. (a) A few steps of series-parallel decomposition for some graph G, according to
the definition. (b) Computation of R1 and R2. (c) Drawing (s1, t1) and (s2, t2). (d)–(e)
Illustration for free points.

di(t1, G1 \ (s1, t1)) ≤ ∆ − 1, we have di(t1, G1 \ (s1, t1)) ≤ f(ru) + f(rl) in R1.
Therefore, we can inductively draw Gi inside Ri, i ∈ {1, 2}. It is straightforward
to merge these drawings by appropriate scaling. Since the drawings inside Ri

maintain Property (?), the merged drawing also satisfies that property.

Case 2 (Parallel Composition): In this case s = s1 = s2 and t = t1 = t2. We
first create two copies R1 and R2 of R, i.e., R1 = a′b′c′d′ and R2 = a′′b′′c′′d′′,
where G1 and G2 will be drawn, respectively. Figure 3 illustrates an example.

We now define the free points of the arms of s1, t1 and s2, t2 that are inside R1

and R2, respectively. We distribute do(s1) among a′d and a′r in this order, i.e., we
set f(a′d) = min{f(ad), do(s1)}, and f(a′r) = max{0, do(s1) − f(a′d)}. Similarly,
distribute di(t1) among c′l and c′u in this order, i.e., set f(c′l) = min{f(cl), di(t1)},
and f(c′u) = max{0, di(t1)− f(c′l)}, e.g., Figure 3(b). The number of free points
of s2 and t2 is the number of free points of s and t that remains after assigning
free points to s1 and t1, as shown in Figure 3(c).

Since do(s) ≤ f(ad) + f(ar) and do(s) = do(s1) + do(s2), according to our
assignment of free points, do(s1) ≤ f(a′d)+f(a′r). Similarly, since di(t) ≤ f(cl)+
f(cu) and di(t) = di(t1) + di(t2), we obtain di(t1) ≤ f(c′l) + f(c′u). It is now
straightforward to observe that do(s2) ≤ f(a′′d)+f(a′′r ) and di(t2) ≤ f(c′′l )+f(c′′u).
Therefore, by induction, can draw G1 and G2 inside R1 and R2, respectively.

The drawing of G1 takes consecutive free points from the arms of s (re-
spectively, t) in anticlockwise (respectively, clockwise) order. The drawing of G2

takes the remaining consecutive free points in the same order. Therefore, one
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can merge the two drawings inside R1 and R2 avoiding edge crossings inside R.
The details are omitted due to space constraints. ut

Theorem 1. Every SP graph G has a (1/2)-balanced ;-contact representation.

Proof. If the source s and sink t of G are not adjacent, then by Lemma 1, G
admits the required representation. Otherwise, let G′ be the graph G \ (s, t). By
Lemma 1,G′ admits a (1/2)-balanced ;-contact representation inside a rectangle
R = abcd, where s and t lie on the opposite corners a and c, respectively, and
the free points f(ad), f(ar), f(cl), f(cu) are prespecified such that do(s,G

′) ≤
f(ad) + f(ar) and di(t, G

′) ≤ f(cl) + f(cu).
We define f(ad) = d∆/2e− 1, f(ar) = d∆/2e, f(cl) = d∆/2e− 1 and f(cu) =

d∆/2e. Since do(s,G′) ≤ ∆− 1 and di(t, G
′) ≤ ∆− 1, the conditions do(s,G

′) ≤
f(ad) + f(ar) and di(t, G

′) ≤ f(cl) + f(cu) hold. Hence by Lemma 1, we can
compute a (1/2)-balanced ;-contact representation Γ ′ of G′ inside R. Finally,
we draw the edge (s, t) along the polygonal chain abc. ut

3 Balanced Representations for 2-Trees (c = 1/3)

The idea of the algorithm for computing (1/3)-balanced ;-contact represen-
tations is similar to that of Section 2, however, here the construction is more
involved. Let uv denote the line segment from u to v. We first prove the following
lemma, which is similar to Lemma 1.

Lemma 2. Let G be a SP graph with source s and sink t, and let G′ be the
graph obtained from G by deleting the edge (s, t), if such an edge exists. Let
R = k1k2k3k4 be an axis-parallel rectangle such that s and t are centered at
a ∈ k1k2 and c ∈ k2k3, respectively, but not at k2. Assume that the free points
of the arms of s and t that lie on R are prespecified. Let x (respectively, y) be
the total number of free points of all arms of s (respectively, t) that lie inside
R. If do(s,G

′) ≤ x and di(t, G
′) ≤ y, then G′ admits a (1/3)-balanced ;-contact

representation Γ in R satisfying the following property.

(K) The number of contact points at each arm incident to s and t in Γ is at
most the number of free points specified for that arm as input.

Proof. We employ an induction on the number of vertices n of G. The case when
n = 2 is straightforward, hence we now assume that n > 2, and the lemma holds
for every G that has fewer than n vertices. We now consider the case when G has
n vertices. Since G is a SP graph and n > 2, G′ must be a SP graph, i.e., G′ is
obtained either by a series or a parallel composition of some SP graphs G1 and
G2. Let sj and tj be the source and sink of Gj , respectively, where j ∈ {1, 2}.
We consider two cases depending on the composition of G1 and G2 in G′.

Case 1 (Series Composition): We first construct two rectangular regions R1

and R2 inside R, where G1 and G2 will be drawn, respectively, and then define
the free points. In the following we construct R1 and R2 assuming that di(t1) ≥



2d∆/3e. Therefore, we ensure that three of the arms of t1 lie in R1 and one of
the arms of s2 lies in R2. The case when di(t1) < d∆/3e (i.e., do(s2) ≥ 2d∆/3e)
is symmetric. By slightly modifying the construction1 we can deal with the case
when d∆/3e ≤ di(t1) < 2d∆/3e. We omit the details due to space constraints.

A. Determine the leftmost arm h in the sequence ad, ar, au that is not saturated.
B. Determine the leftmost arm h′ in the sequence cl, cu, cr that is not saturated.
C. If h and h′ lie on the boundary of R, then we compute R1 and R2 according

to the cases (C1)–(C3). Figure 4 shows that the case analysis is exhaustive
by examining all possible positions of a and c in R. In Figure 4, the point r
corresponds to the center of t1(= s2).
(C1) If h is parallel to h′ and h = ar (i.e., Column 3 of Row 1 in Fig-

ure 4), then we draw a straight line pq such that p, q are two points
on h, h′, respectively. Let r and r′ be two distinct points on pq such
that dist(p, r) <dist(p, r′). We then draw a line segment r′z ⊥ pq, such
that z ∈ cu. R1 and R2 are the rectangles that contain the unsaturated
arms, i.e., in this case R1 (respectively, R2) is the rectangle with diag-
onal r′k4 (respectively, r′c). Sometimes Ri, i ∈ {1, 2}, may not contain
the center of the corresponding source and sink. In such a case, we add
a dummy copy of the source or sink, e.g., see the gray diamond shapes
in Figure 4. Note that while computing the drawing of G1 inside R1

inductively, we rotate R1 by 90◦ anticlockwise such that the precon-
ditions of the induction hold. Furthermore, we define f(s1z) = 0 such
that no unnecessary adjacencies are created in the inductive drawing.
Since the addition of dummy copy of a source or sink is straightforward,
we do not explicitly describe them in the subsequent cases.

(C2) If h is parallel to h′ and h ∈ {ad, au} (i.e., Column 2 of Row 1 and
Columns 1–2 of Row 2 in Figure 4), then we draw a straight line pq
such that p, q are two points on h, h′, respectively. Let r be a point on
pq. We then draw a line segment rz ⊥ pq, such that z ∈ cl.

(C3) Otherwise, h ⊥ h′ (i.e., Columns 1 and 4 of Row 1, Columns 3–4 of
Row 2, and Row 3 in Figure 4). Here we draw a polygonal chain p, r, q
such that p, q are two points on h, h′, respectively, pr ⊥ rq. We then
draw a line segment rz ⊥ rq, such that either z ∈ k2k3 (when rq is
horizontal), or z ∈ k3k4 (when rq is vertical).
An interesting case is shown in Column 2 of Row 3 in Figure 4, where
the dummy vertex is placed in the proper interior of the segment qk3
instead of placing it on q. The reason is to respect the precondition
of the induction that s2 and t2 should not lie on q. Here we set the
free points of the left and up arms of t2 to 0 to avoid any unnecessary
adjacencies in the recursive construction.

D. Otherwise, at least one of h, h′ is in the proper interior of R. In this scenario
we consider the following cases depending on the positions of a and c in R.

1 Here we ensure that at least two arms of t1 (respectively, s2) lie in R1 (respectively,
R2). At most one arm of t1 on the boundary of R1 may coincide with an arm of s2
on the boundary of R2, where we assign the free points depending on di(t1).
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Fig. 4. Computation of R1 and R2 when h and h′ lie on the boundary of R, and
di(t1) ≥ d∆/3e. (Case a = k1, c = k3): Row 1. (Case a 6= k1, c = k3): Row 2. (Case
a = k1, c 6= k3): Symmetric to Row 2. (Case a 6= k1, c 6= k3): Row 3.

(D1) If a 6= k1 and c = k3 (i.e., Row 1 of Figure 5), then we follow (C2) or
(C3), depending on whether h||h′ or h ⊥ h′, setting p = r.

(D2) If a = k1 and c 6= k3, then the computation is symmetric to (D1).
(D3) Otherwise, both h and h′ may lie in the proper interior of R. In this

case, if h′ lies on the boundary of R, then the computation of R1 and
R2 is shown in Row 2 of Figure 5. Otherwise, h′ lies in the proper
interior of R, and the computation of R1 and R2 depends on whether
f(cr) 6= 0 (i.e., see Row 3 of Figure 5) and f(cr) = 0 (i.e., Row 4 in
Figure 5). The details are omitted due to space constraints.

Computation of free points: If R2 contains an arm of r that does not lie on the
boundary of R1, then we set f(rl) = f(rr) = f(ru) = f(rd) = d∆/3e. Otherwise,
R2 contains only one arm of r and it is shared with R1, i.e., Columns 3–4 of
Row 1 in Figure 4, and Row 4 of Figure 5. In such a case, we assign d∆/3e free
points to the arms of r that are not shared, and for the shared arm, we assign
do(s2, G2) free points in R2 and d∆/3e − do(s2, G2) free points in R1.

We now assign the free points of s and t to s1 and t2, respectively, and place
t1(= s2) on r. If the edge (si, ti) exists, i ∈ {1, 2}, then we draw (si, ti) along h
and h′, as shown in bold in Figures 4 and 5. Observe that while drawing (si, ti),
we use some free points of s1 and t2. Therefore, we decrease the free points by one
for each arm that helps routing (si, ti). Since R1 includes all unsaturated arms of
s that lie in R, the number of free points of a in R1 is at least do(s1, G1\(s1, t1)).
According to our assignment of free points, the number of free points of r in R1

is at least di(t1, G1 \ (s1, t1)). Therefore, we can inductively draw G1 inside R1,
and similarly G2 inside R2.

While computing the drawings of G1 and G2 inductively, sometimes we ro-
tated R1 and R2 anticlockwise. Therefore, before merging such a drawing, we
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Fig. 5. Computation of R1 and R2 when at least one of h, h′ lie in the proper interior
of R, and di(t1) ≥ d∆/3e. (Case a 6= k1 and c = k3): Row 1. (Case a = k1 and
c 6= k3): Symmetric to Row 1. (Case a 6= k1 and c 6= k3): Rows 2–4.

rotate it clockwise by the same amount. Furthermore, while computing the draw-
ings of G1 and G2, sometimes we added some dummy source and sink. For any
arm h of the dummy vertex, that is not a part of the arm of its real copy (e.g., see
the illustration in Case (C1)), we set f(h) = 0. Therefore, the merged drawing
correctly realizes all adjacencies. Since the drawings inside R1 and R2 maintains
Property (K), the merged drawing also satisfies that property.

Case 2 (Parallel Composition): In this case s = s1 = s2 and t = t1 = t2. We
first create two copies R1 and R2 of R, i.e., R1 = a′b′c′d′ and R2 = a′′b′′c′′d′′,
where G1 and G2 will be drawn, respectively. We now define the free points.
Recall that in Case 2 of Lemma 1, we distributed do(s1) among f(a′d), f(a

′
r),

and di(t1) among f(c′l), f(c
′
u). Since here we may have at most three arms of

s and t inside R, we distribute do(s1) among a′d, a
′
r and a′u in this order, and

similarly, distribute di(t1) among c′l, c
′
u and c′r in this order. The number of free

points in the arms of s2 and t2 is determined by the free points of s and t that
remains after assigning free points to s1 and t1.

According to our assignment of free points, do(s1) = f(a′d) + f(a′r) + f(a′u).
Since do(s) ≤ f(ad) + f(ar) + f(au) and do(s) = do(s1) + do(s2), the inequality
do(s2) ≤ f(a′′d) + f(a′′r ) + f(a′′u) holds. Similarly, di(t1) = f(c′l) + f(c′u) + f(c′r)
and di(t2) ≤ f(c′′l ) + f(c′′u) + f(c′′r ). Therefore, by induction, we can draw G1

and G2 inside R1 and R2, respectively.
The idea of merging the drawings of G1 and G2 into R is similar to the Case

2 of Lemma 1. Observe that the drawing of G1 takes consecutive free points
from the arms of s (respectively, t) in anticlockwise (respectively, clockwise)
order. On the other hand, the drawing of G2 takes the remaining consecutive
free points from the arms of s (respectively, t) in anticlockwise (respectively,
clockwise) order. Therefore, one can merge the two drawings inside R1 and R2



avoiding edge crossings inside R. Since the drawings inside R1 and R2 maintains
Property (K), the combined drawing also satisfy that property. ut

Theorem 2. Every SP graph G has a (1/3)-balanced ;-contact representation,
but not necessarily a (1/4− ε)-balanced representation, for any ε > 0.

Proof. The proof for the upper bound is analogous to the proof of Theorem 1.
The only difference is that here we use Lemma 2 instead of Lemma 1. The proof
for the lower bound is implied by SP graphs with ∆ ≥ 4 and ∆ mod 4 = 0. ut

4 Balanced Representations of Planar 3-Trees (c = 1/2)

In this section we show that planar 3-trees admit (1/2)-balanced representations.
A planar 3-tree G with n ≥ 3 vertices is a triangulated planar graph such that if
n > 3, then G contains a vertex whose deletion yields a planar 3-tree with n− 1
vertices. Let x, y, z be a cycle in G. By Gxyz we denote the subgraph induced
by x, y, z and the vertices that lie interior to the cycle. Every planar 3-tree G
with n > 3 vertices contains a vertex that is the common neighbor of all three
outer vertices of G. We call this vertex the representative vertex of G. Let p be
the representative vertex of G and let a, b, c be the three outer vertices of G,
as in Figure 6(a). The subgraphs Gabp, Gbcp and Gcap are planar 3-trees. Let
G′

abp, G
′
bcp and G′

cap be the subgraphs obtained by deleting the outer edges of
Gabp, Gbcp and Gcap, respectively. These subgraphs the three nested components
of G. By d(u,G), we denote the degree of vertex u in G. Given a planar 3-tree G
and a rectangle R, we recursively divide R into three sub-rectangles where the
nested components of G will be drawn. We first prove the following lemma.

Lemma 3. Let G be a planar 3-tree with outer vertices a, b, c and representative
vertex p, and let G′ be the graph obtained from G by deleting the outer edges of G.
Let R = k1k2k3k4 be an axis-parallel rectangle such that a, b, c lie on k1k2, k2k3
and k4, respectively. Assume that the number of free points of each arm of a, b, c is
prespecified. If the inequalities d(a,G′) ≤ f(ad)+f(au), d(b,G

′) ≤ f(bl)+f(br),
and d(c,G′) ≤ f(cl) + f(cd) hold, then G′ admits a (1/2)-balanced ;-contact
representation Γ in R satisfying the following property.

(R) The number of contact points at each arm incident to a, b and c in Γ is at
most the number of free points specified for that arm as input.

Proof. We employ an induction on the number of vertices of G. If n = 3, then
G′ consists of only three isolated vertices a, b and c that lie on k1k2, k2k3 and k4,
respectively. It is now straightforward to verify Property (R). Hence we assume
that n ≥ 4 and the lemma holds for all G with smaller than n vertices. We now
consider the case when G has n vertices.

We first compute three sub-rectangles R1, R2 and R3, where G′
abp, G

′
bcp and

G′
cap will be drawn, respectively. Define h to be either au or ad depending on

whether d(a,G′
abp) ≥ f(ad) or not. Similarly, define h′ to be either br or bl

depending on whether d(b,G′
abp) ≥ f(bl) or not. Since the inequalities f(ad) +
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f(au) ≥ d(a,G′) ≥ 1 and f(bl) + f(br) ≥ d(b,G′) ≥ 1 hold, h and h′ must be
unsaturated. Let x and y be two points on h′ and h, respectively, as shown in
Figure 6(b). Draw two line segments xr ⊥ h′ and yr ⊥ h such that they meet at
point r. Define h′′ to be the arm cl or cd depending on whether d(c,G′

bcp) ≥ f(cd)
or not. Since f(cl) + f(cd) ≥ d(c,G′) ≥ 1, h′′ must be unsaturated. We draw an
orthogonal line segment rz such that z ∈ h′′. Observe that rx, ry and rz divides
R into three sub-rectangles R1, R2 and R3, i.e., the sub-rectangles that contain
corners k2, k3 and k1, respectively.

We place the vertex p on r, draw the edges (a, p), (b, p) and (c, p) along ry, rx
and rz, respectively, and then assign d∆/2e − 1 free points at each arm of r. To
define the free points of the other arms of Ri, we distribute the free points of
a, b and c as follows. We distribute d(a,G′

abp) among ad and au (in R1), and
d(a,G′

acp) among au and ad (in R3). We then distribute d(b,G′
abp) among bl

and br (in R1), and d(b,G′
bcp) among br and bl (in R2). Finally, we distribute

d(c,G′
bcp) among cd and cl (in R2), and d(c,G′

acp) among cl and cd (in R3).
Let G′

i be the nested component of G that corresponds to Ri, i ∈ {1, 2, 3}.
Observe that some outer vertices of G′

i may not lie on Ri. Hence we cannot
directly apply the induction hypothesis. Hence for each vertex a, b or c that does
not lie on the boundary of Ri but belongs to G′

i, we add a dummy copy of that
vertex at x, y or z, respectively. Furthermore, for each arm h of the dummy copy
that is not a part of any arm of its real copy, we set f(h) = 0, e.g., f(cd) = 0 in
Figure 6(c). Consequently, the recursively computed drawings do not create any
unnecessary adjacencies. Observe that each Ri now meets the preconditions of
the induction, as shown in Figures 6(c)–(e), and hence we inductively draw G′

i

inside Ri. To apply the induction, we need to be careful of the vertex that play
the role of k4, i.e., the corner having exactly two arms inside the rectangle that
are perpendicular to each other, e.g., the position of p in Figures 6(c)–(d), and
the position of c in Figure 6(e). Each Ri contains exactly one of r and c at one
of its four corners, which plays the role of k4 in Ri. Since the smaller drawings
satisfy Property (R), the final drawing satisfies Property (R). ut

Theorem 3. Every planar 3-tree G admits a (1/2)-balanced ;-contact repre-
sentation, but not necessarily a (1/3)-balanced representation.

Proof. Let a, b, c be the outer vertices of G, and let R = k1k2k3k4 be an axis-
parallel rectangle. Place a, b, c on k1k2, k2k3 and k4, respectively, draw the outer



edges of G along the boundary of R, and finally, assign d∆/2e − 1 free points
at each arm of a, b and c. Let G′ be the graph obtained by removing the outer
edges of G. By Lemma 3, G′ has a (1/2)-balanced ;-contact representation in
R. The lower bound that c > 1/3 is implied by the graph K4. ut

5 Conclusion

We have proved that 2-trees (respectively, planar 3-trees) admit c-balanced ;-
contact representations, where 1/4 ≤ c ≤ 1/3 (respectively, 1/3 < c ≤ 1/2). A
natural open question is to find tight bounds on c. Although our representations
for planar 3-trees preserve input embedding, the representations for 2-trees do
not have this property. Thus it would be interesting to examine whether there
exist algorithms for (1/3)-balanced representations of 2-trees that preserve input
embedding. Another intriguing open question is to characterize planar graphs
that admit c-balanced ;-contact representations, for small fixed values c.
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